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ABSTRACT 
 

As with the advancement of the information technologies, the amount of accumulated data is also increasing. It has 

resulted in large amount of data stored in databases, warehouses and other repositories. Thus the Data mining comes 

into picture to explore and analyse the databases to extract the interesting and previously unknown patterns and rules 

known as association rule mining. In data mining, association rule mining becomes one of the important tasks of 

descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining 

frequent itemset is very fundamental part of association rule mining. Many algorithms have been proposed from last 

many decades including horizontal layout based techniques, vertical layout based techniques, and projected layout 

based techniques. But most of the techniques suffer from repeated database scan, Candidate generation (Apriori 

Algorithms), memory consumption problem (FP-tree Algorithms) and many more for mining frequent patterns. As 

in retailer industry many transactional databases contain same set of transactions many times, to apply this thought, 

in this paper we present a new technique which is combination of present Apriori (improved Apriori) and FP-tree 

techniques that guarantee the better performance in terms of time and memory than classical aprioi algorithm. 

Keywords: Frequent Itemset, Association Rule Mining, FP-Tree, Apriori, Close Pattern, Cluster Based Mining. 

 

I. INTRODUCTION 

 

Data mining addresses two basic tasks: verification and 

discovery. The verification task seeks to verify user’s 

hypotheses. While the discovery task searches for 

unknown knowledge hidden in the data. In general, 

discovery task can be further divided into two 

categories, which are descriptive data mining and 

predicative data mining. Descriptive data mining 

describes the data set in a summery manner and presents 

interesting general properties of the data. Predictive data 

mining constructs one or more models to be later used 

for predicting the behaviour of future data sets. There 

are a number of algorithmic techniques available for 

each data mining tasks, with features that must be 

weighed against data characteristics and additional 

business requirements. Among all the techniques, in this 

research, we are focusing on the association rules 

mining technique which is descriptive mining 

technique, with transactional database system. This 

technique was formulated by [2] and is often referred to 

as market basket analysis. 

 

Association rules are one of the major techniques of 

data mining. Association rule mining finding frequent 

patterns, associations, correlations, or causal structures 

among sets of items or objects in transaction databases, 

relational databases, and other information repositories 

[13]. The volume of data is increasing dramatically as 

the data generated by day-to-day activities. Therefore, 

mining association rules from massive amount of data in 

the database is interested for many industries which can 

help in many business decision making processes, such 

as cross-marketing, Basket data analysis, and promotion 

assortment. The techniques for discovering association 

rules from the data have traditionally focused on 

identifying relationships between items telling some 

aspect of human behaviour, usually buying behaviour 

for determining items that customers buy together. All 

rules of this type describe a particular local  

pattern. The group of association rules can be easily 

interpreted and communicated. 

 

A lot of studies have been done in the area of 

association rules mining. First introduced the 
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association rules mining in many studies have been 

conducted to address various conceptual, 

implementation, and application issues relating to the 

association rules mining task. Researcher in application 

issues focuses on applying association rules to a variety 

of application domains. For example: Relational 

Databases, Data Warehouses, Transactional Databases, 

and Advanced Database Systems (Object-Relational, 

Spatial and Temporal, Time-Series, Multimedia, Text, 

Heterogeneous, Legacy, Distributed [14]. 

 

Define the problem of finding the association rules from 

databases introduces of frequent pattern mining for 

discovery of interesting associations and correlations 

between itemsets in transactional and relational 

database. Association rule mining can be defined 

formally as follows: 

 

I= {i1, i2, i3, …, in} is a set of items, such as products 

like (computer, CD, printer, papers, …and so on). Let 

DB be a set of database transactions where each 

transaction T is a set of items such that T⊆I. Each 

transaction is associated with unique identifier, 

transaction identifier (TID). Let X, Y be a set of items, 

an association rule has the form antecedent and is called 

the consequent of the rule where, set of items is called 

as an itemset or a pattern[7]. Let  n be the number of 

rows (transactions) containing  itemset in the given 

database. Frequent patterns, such as frequent itemsets, 

substructures, sequences term-sets, phrase sets, and sub 

graphs, generally exist in real-world databases. 

Identifying frequent itemsets is one of the most 

important issues faced by the knowledge discovery and 

data mining community. Frequent itemset mining plays 

an important role in several data mining fields as 

association rules [1] warehousing [9], correlations, 

clustering of high-dimensional biological data, and 

classification [13]. Given a data set d that contains k 

items, the number of itemsets that could be generated is 

2k - 1, excluding the empty set[1]. In order to searching 

the frequent itemsets, the support of each itemset must 

be computed by scanning each transaction in the 

dataset. A brute force approach for doing this will be 

computationally expensive due to the exponential 

number of itemsets whose support counts must be 

determined. There have been a lot of excellent 

algorithms developed for extracting frequent itemsets in 

very large databases. strategies adopted by these 

algorithms: the first is an effective pruning strategy to 

reduce the combinatorial search space of candidate 

itemsets (Apriori techniques). The second strategy is to 

use a compressed data representation to facilitate in-

core processing of the itemsets (FP-tree techniques). 

Database has been used in business management, 

government administration, scientific and engineering 

data management and many other important 

applications. The newly extracted information or 

knowledge may be applied to information management, 

query processing, process control, decision making and 

many other useful applications. With the explosive 

growth of data, mining information and knowledge from 

large databases has become one of the major challenges 

for data management and mining community. 

 

The frequent itemset mining is motivated by problems 

such as market basket analysis [3]. A tuple in a market 

basket database is a set of items purchased by customer 

in a transaction. An association rule mined from market 

basket database states that if some items are purchased 

in transaction, then it is likely that some other items are 

purchased as well. Finding all such rules is valuable for 

guiding future sales promotions and store layout. The 

problem of mining frequent itemsets are essentially, to 

discover all rules, from the given transactional database 

D that have support greater than or equal to the user 

specified minimum support.Counting of resolutions of a 

constraint tree is an expensive procedure. But if the 

number of constraints, k is small, the tree construction is 

quite feasible. In practice, k is typically small, and in 

our case k=3, so this algorithm will be of practical use. 

 

II. METHODS AND MATERIAL 
 

A. Problem Formulation 

 

Let I = { i1, i2,…….n }be a set of items and n is 

considered the dimensionality of the problem. Let D be 

the task relevant database which consists of transactions 

where each transaction T is set of items such that T £ I. 

A transaction T is said to contain itemset X, which is 

called a pattern. A transaction T is said to be maximal 

frequent if its pattern length is greater than or equal to 

all other existing transactional patterns and also count of 

occurrence (support) in database is greater than or equal 

to specified minimum support threshold [15]. An 

itemset X is said to be frequent if its support is greater 

than or equal to give the possible minimum support 

threshold.   

 

Transactional database D and minimum support 
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threshold is given, therefore the problem is to find the 

complete set of frequent itemsets from Transactional 

type of databases to increase the business, so that 

relation between customers behaviour can be found. 

 
Figure 1: Methodology used to find frequent patterns. 

 

FP-tree algorithm [5, 6] is based upon the recursively 

divide and conquers strategy; first the set of frequent 1-

itemset and their counts is discovered. With start from 

each frequent pattern, construct the conditional pattern 

base, then its conditional FP-tree is constructed (which 

is a prefix tree.). Until the resulting FP-tree is empty, or 

contains only one single path. (Single path will generate 

all the combinations of its sub-paths, each of which is a 

frequent pattern). The items in each transaction are 

processed in L order. (i.e. items in the set were sorted 

based on their frequencies in the descending order to 

form a list). 

 

B. Construction of FP-Tree 

 

Create root of the tree as a “null”. After scanning the 

database D for finding the 1-itemset then process the 

each transaction in decreasing order of their frequency. 

A new branch is created for each transaction with the 

corresponding support. If same node is encountered in 

another transaction, just increment the support count by 

1 of the common node. Each item points to the 

occurrence in the tree using the chain of node-link by 

maintaining the header table. After above process 

mining of the FP-tree will be done by Creating 

Conditional (sub) pattern base[12]. Start from node 

constructs its conditional pattern base. Then, Construct 

its conditional FP-tree & perform mining on such a tree. 

Join the suffix patterns with a frequent pattern generated 

from a conditional GP-tree for achieving FP-growth. 

The union of all frequent patterns found by above step 

gives the required frequent itemset can be found in [10]. 

The problem of mining frequent itemsets arises in the 

large transactional databases when there is need to find 

the association rules among the transactional data for 

the growth of business. Many different algorithms has 

been proposed and developed to increase the efficiency 

of mining frequent itemsets including (Horizontal layout 

based algorithms, Vertical Layout Based algorithms [1, 

2, 4, 8, 9, 10], Projected layout based algorithms and 

Hybrid algorithms. There are several ways to mine the 

frequent patterns using horizontal layout based 

approach. FP-tree is one of the prominent approach to 

find this itemset which satisfies the minimum support 

which must be given initially by the system and 

minimum confidence is one the important parameter to 

prune the huge set of itemsets.  The FP-tree built for the 

conditional pattern base X is called conditional FP-tree. 

Let sample database in table 1 where Tid denotes 

unique transaction id and I1, I2, I3 indicates number of 

itemsets of a particular transaction. 

 

Table 1: Sample transactions with itemsets 
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Table 2: Support Count Result  

 

 
               

Suppose minimum support is 5. Thus delete all 

infrequent items whose support is less than 5.After all 

the remaining transactions arranged in descending order 

of their frequency. Create a FP- tree[4]. For Each 

Transaction create a node of an items whose support is 

greater than minimum support, as same node encounter 

just increment the support count by 1. 

 
Figure 2: FP-Tree Constructed for Sample Database. 

 

C. Implementation of  Proposed Approach 

 

Data Assembly also include collecting of data, for 

testing purpose the data is collected from the random 

source. The data is challenging due to the number of 

characteristics which are the number of the records, and 

the sparseness of the data (each records contains only 

small portion of items). In our experiments we chose 

different dataset with different properties, to prove the 

efficiency of the algorithms, Table 3 shows the datasets 

and the characteristics such as length and type. 

 

Table 3:  Data set properties  

  
                   

In a large transactional database like retailer database it 

is common that multiple items are selling or purchasing 

simultaneously therefore the database surly contains 

various transactions which contain same set of items. 

Thus by taking advantage of these transactions trying to 

find out the frequent itemsets and prune the database as 

early as possible without generating the candidate 

itemset and multiple database scan, results in efficiently 

usage of memory and improved computation. This 

proposed algorithm is based upon the Apriori property 

[2] i.e. all non-empty subsets of the frequent itemsets 

are frequent. Algorithm has two procedures. In first 

procedure, find all those maximal transactions which are 

repeating in the database equal to or greater than min 

user defined support also known as maximal frequent 

itemset [15]. Then get all nonempty subsets of those 

maximal frequent itemset as frequent according to 

Apriori property. Scan the database to find 1-itemset 

frequent elements. There may be many items found 

which are 1-itemset frequent but not include in maximal 

frequent transactions. Therefore prune the database by 

just considering only those transactions from the 

database which contain 1-itemset frequent elements, but 

not include in the maximal frequent itemsets. Now this 

pruned database is smaller than the actual database in 

the average cases and no item left in best case. For the 

second procedure, pruned database is taken as input and 

scan the pruned database once find 1-itemset frequent 

and delete those items from transaction which are not 1- 

itemset frequent. Then construct the FP-tree [6] only for 

pruned transactions. In this way it reduces the memory 

problem for FP-tree because the database is reduced in 

most of cases. In best case no need to build FP-tree 

because all elements are found in first procedure. In the 

worst case if there is no maximal frequent transaction 

exist, then only second procedure run and also 

computational performance is same as FP-tree[11]. The 

key of this idea to prune the database after finding the 

maximal frequent itemsets and formation of FP-tree for 

a pruned database thus reduce memory problem in FP-

tree and make the mining process fast. The more detail 

step as follows: 
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Procedure1: 

 

Input: Database D, minimum support 

 

Step 1: Take a 2- dimensional array; Put the transaction 

into 2-dimmension array with their count of repetition. 

 

Step 2: Arrange them in increasing order on the basis of 

the pattern length of each transaction. 

 

Step 3: Find maximal transactions (k-itemset) from the 

array whose count is greater than or equal to the 

minimum support known as maximal frequent itemsets 

or transactions. If k-itemsets count is less than minimum 

support then look for k-itemsets and (k-1)-itemsets 

jointly for next (k-1) maximal itemsets and so on until 

no itemsets count found greater than minimum support. 

If no such transaction found then go to Procedure2. 

 

Step 4: Once the maximal frequent transactions found, 

than according to Apriori property consider all its non-

empty subsets are frequent. 

 

Output: some or all frequent itemsets, Pruned database-

D1. 

 

Procedure2: 

 

Input: Pruned database D1, minimum support 

 

Step 1: Find frequent 1-itemset from pruned database; 

delete all those items which are not 1-itemset frequent. 

 

Step 2: Construct FP-tree for mine remaining frequent 

itemset by following the procedure of FP-tree algorithm 

as discussed above in section 2B. 

 

Output: Remaining frequent itemsets. 

 
 

Table 4: (step-1) After scanning a database put items in 

2-dimensional array with the count of repetition. 

 

According to step-2 find maximal itemset (4-itemset). 

Check weather its count is greater or equal to specified 

support, its count is 2 in our case which is equal to 

given support therefore this transaction is considered as 

maximal frequent. (If its count is less than support value 

then we scan k-1 and k-itemset in array for k-1 maximal 

itemset jointly and so on until finding all maximal 

frequent itemset from a array. i.e. 3-itemset and 4-

itemset for checking 3-itemset maximal and so on ). 

According to Apriori property (step 3) subset of 

maximal frequent itemset is also considered as frequent 

.i.e. Maximal frequent itemset: {I1, I2, I3, I5}.All 

subsets are frequent (Apriori Property) i.e. {I1, I2, and 

I3},{I1, I2, I5}, {I2, I3, I5}, {I2, I3}, {I2, I5}, {I1, I2}, 

{I1, I3}, {I1, I5}, {I3, I5}, {I1}, {I2}, {I3}. 

While scan the database for finding the above mined 

support to find 1-itemset frequent from database, it is 

found that I4 which is frequent butnot include in 

maximal frequent itemset. (There may be many items 

remain which are not include in maximal frequent 

itemsets, in our case only 1 item is there). Prune the 

database by considering only transaction which contains 

I4 itemset. 

 

Output: Some frequent itemsets ({I1, I2, I5}, {I2, I3, 

I5}, {I2, I3}, {I2, I5}, {I1, I2}, {I1, I3}, {I1, I5}, {I3, 

I5},{I1},{I2},{I3}). 

 

III. RESULTS AND DISCUSSION 
 

Time Comparison 

 

As a result of the experimental study, revealed the 

performance of our new technique with the Apriori and 

FP-Growth algorithm. The run time is the time to mine 

the frequent itemsets. The experimental result of time is 

shown in Figure 3 reveals that the proposed scheme 

outperforms the FP-growth and the Apriori approach. 

 

  
Figure 3: The execution time for mushroom dataset. 
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Figure 4 : The execution time for Artificial dataset 

 

As it is clear from the comparison new algorithm 

performs well for the low support value for the 

mushroom dataset which contains 8124 transactions and 

average length of items 23. But at the higher support its 

performance matches the FP-Tree and Apriori 

algorithms. Apriori performs with larger time. FP-tree 

produces the approximately same execution as of new 

approach in later stages. For the artificial dataset which 

contains the maximal frequent itemset in large amount 

shows better result with new approach as shown in 

figure 3 then FP-tree and Apriori algorithm. In the 

artificial dataset there are various transactions consider 

which occur repeatedly in the database and some 

transactions occur greater than the minimum support. 

The itemset remains for mining frequent itemset are 

mined with the help of second procedure whose 

complexity equals to the FP-Growth algorithm but due 

to procedure 1 the overall complexity reduce and 

become efficient and more accurate than classic apriori. 

 

Memory-Comparison 

 

 
Figure 5 : The memory usage at various support levels 

on Mushroom dataset. 

As it is clear from figure 5, the memory consumption 

for the Apriori algorithm is the highest at all level 

support because it produces candidate itemsets. The 

memory consumption for FP-tree at higher support 

levels is approximately same as the new approach 

because as the support increase the probability of 

finding the maximal itemset whose repetition is greater 

than the minimum support. is less thus its working 

become same as the FP-Growth algorithm 

 

The below figure 6 shows the comparison takes place at 

sparse dataset, in sparse dataset data sets containing 

more enough zero entries (unmarked fields or items), in 

other words, the ratio number of fields / number of 

elements for the data database is smaller. Since the 

Apriori algorithm stores and processes only the non-

zero entries, it takes the advantage of pruning most of 

the infrequent items during the first few passes. 

Therefore At high levels support the performances of 

our proposed scheme and Apriori are near. But at lower 

levels it shows that new approach performs well at all 

support level in consumption of memory. In this case 

also Apriori consume large amount of memory which is 

more than the FP-Tree and new approach due to its 

candidate generation problem. FP-tree approach 

performs better than the Apriori but not than the new 

approach. 

 

 
Figure 6: The memory usage at various support levels 

on Artificial dataset. 

 

IV. CONCLUSION 

 
We considered the following factors for creating our 

new scheme, which are the time and the memory 

consumption, these factors are affected by the approach 

for finding the frequent itemsets. Work has been done to 

develop an algorithm which is an improvement over 

Apriori and FP-tree with using an approach of improved 

Apriori and FP-Tree algorithm for a transactional 

database. According to our observations, the 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  53 

performances of the algorithms are strongly depends on 

the support levels and the features of the data sets (the 

nature and the size of the data sets). Therefore we 

employed it in our scheme to guarantee the time saving 

and the memory in the case of sparse and dense data 

sets. It is found that for a transactional database where 

many transaction items are repeated many times as a 

super set in that type of database maximal Apriori 

(improvement over classical Apriori) is best suited for 

mining frequent itemsets. The itemsets which are not 

included in maximal super set is treated by FP-tree for 

finding the remaining frequent itemsets. Thus this 

algorithm produces frequent itemsets completely. This 

approach doesn’t produce candidate itemsets and 

building FP-tree only for pruned database that fit into 

main memory easily. Thus it saves much time and space 

and considered as an efficient method as proved from 

the results. 
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