
IJSRSET17311 | Received : 30 Dec-2016 | Accepted : 07 Jan-2017 | January-February-2017 [(3)1: 47-53]

© 2017 IJSRSET | Volume 3 | Issue 1 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

47

An Efficient Approach to Mine Frequent Itemsets Using the

Variant of Classic Apriori and FP-Tree
 Md. Towhidul Islam Robin

1
, Ahmed Abdal Shafi Rasel

2
, Aiasha Siddika

3

Stamford University Bangladesh, Dhaka, Bangladesh

ABSTRACT

As with the advancement of the information technologies, the amount of accumulated data is also increasing. It has

resulted in large amount of data stored in databases, warehouses and other repositories. Thus the Data mining comes

into picture to explore and analyse the databases to extract the interesting and previously unknown patterns and rules

known as association rule mining. In data mining, association rule mining becomes one of the important tasks of

descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining

frequent itemset is very fundamental part of association rule mining. Many algorithms have been proposed from last

many decades including horizontal layout based techniques, vertical layout based techniques, and projected layout

based techniques. But most of the techniques suffer from repeated database scan, Candidate generation (Apriori

Algorithms), memory consumption problem (FP-tree Algorithms) and many more for mining frequent patterns. As

in retailer industry many transactional databases contain same set of transactions many times, to apply this thought,

in this paper we present a new technique which is combination of present Apriori (improved Apriori) and FP-tree

techniques that guarantee the better performance in terms of time and memory than classical aprioi algorithm.

Keywords: Frequent Itemset, Association Rule Mining, FP-Tree, Apriori, Close Pattern, Cluster Based Mining.

I. INTRODUCTION

Data mining addresses two basic tasks: verification and

discovery. The verification task seeks to verify user’s

hypotheses. While the discovery task searches for

unknown knowledge hidden in the data. In general,

discovery task can be further divided into two

categories, which are descriptive data mining and

predicative data mining. Descriptive data mining

describes the data set in a summery manner and presents

interesting general properties of the data. Predictive data

mining constructs one or more models to be later used

for predicting the behaviour of future data sets. There

are a number of algorithmic techniques available for

each data mining tasks, with features that must be

weighed against data characteristics and additional

business requirements. Among all the techniques, in this

research, we are focusing on the association rules

mining technique which is descriptive mining

technique, with transactional database system. This

technique was formulated by [2] and is often referred to

as market basket analysis.

Association rules are one of the major techniques of

data mining. Association rule mining finding frequent

patterns, associations, correlations, or causal structures

among sets of items or objects in transaction databases,

relational databases, and other information repositories

[13]. The volume of data is increasing dramatically as

the data generated by day-to-day activities. Therefore,

mining association rules from massive amount of data in

the database is interested for many industries which can

help in many business decision making processes, such

as cross-marketing, Basket data analysis, and promotion

assortment. The techniques for discovering association

rules from the data have traditionally focused on

identifying relationships between items telling some

aspect of human behaviour, usually buying behaviour

for determining items that customers buy together. All

rules of this type describe a particular local

pattern. The group of association rules can be easily

interpreted and communicated.

A lot of studies have been done in the area of

association rules mining. First introduced the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 48

association rules mining in many studies have been

conducted to address various conceptual,

implementation, and application issues relating to the

association rules mining task. Researcher in application

issues focuses on applying association rules to a variety

of application domains. For example: Relational

Databases, Data Warehouses, Transactional Databases,

and Advanced Database Systems (Object-Relational,

Spatial and Temporal, Time-Series, Multimedia, Text,

Heterogeneous, Legacy, Distributed [14].

Define the problem of finding the association rules from

databases introduces of frequent pattern mining for

discovery of interesting associations and correlations

between itemsets in transactional and relational

database. Association rule mining can be defined

formally as follows:

I= {i1, i2, i3, …, in} is a set of items, such as products

like (computer, CD, printer, papers, …and so on). Let

DB be a set of database transactions where each

transaction T is a set of items such that T⊆I. Each

transaction is associated with unique identifier,

transaction identifier (TID). Let X, Y be a set of items,

an association rule has the form antecedent and is called

the consequent of the rule where, set of items is called

as an itemset or a pattern[7]. Let n be the number of

rows (transactions) containing itemset in the given

database. Frequent patterns, such as frequent itemsets,

substructures, sequences term-sets, phrase sets, and sub

graphs, generally exist in real-world databases.

Identifying frequent itemsets is one of the most

important issues faced by the knowledge discovery and

data mining community. Frequent itemset mining plays

an important role in several data mining fields as

association rules [1] warehousing [9], correlations,

clustering of high-dimensional biological data, and

classification [13]. Given a data set d that contains k

items, the number of itemsets that could be generated is

2k - 1, excluding the empty set[1]. In order to searching

the frequent itemsets, the support of each itemset must

be computed by scanning each transaction in the

dataset. A brute force approach for doing this will be

computationally expensive due to the exponential

number of itemsets whose support counts must be

determined. There have been a lot of excellent

algorithms developed for extracting frequent itemsets in

very large databases. strategies adopted by these

algorithms: the first is an effective pruning strategy to

reduce the combinatorial search space of candidate

itemsets (Apriori techniques). The second strategy is to

use a compressed data representation to facilitate in-

core processing of the itemsets (FP-tree techniques).

Database has been used in business management,

government administration, scientific and engineering

data management and many other important

applications. The newly extracted information or

knowledge may be applied to information management,

query processing, process control, decision making and

many other useful applications. With the explosive

growth of data, mining information and knowledge from

large databases has become one of the major challenges

for data management and mining community.

The frequent itemset mining is motivated by problems

such as market basket analysis [3]. A tuple in a market

basket database is a set of items purchased by customer

in a transaction. An association rule mined from market

basket database states that if some items are purchased

in transaction, then it is likely that some other items are

purchased as well. Finding all such rules is valuable for

guiding future sales promotions and store layout. The

problem of mining frequent itemsets are essentially, to

discover all rules, from the given transactional database

D that have support greater than or equal to the user

specified minimum support.Counting of resolutions of a

constraint tree is an expensive procedure. But if the

number of constraints, k is small, the tree construction is

quite feasible. In practice, k is typically small, and in

our case k=3, so this algorithm will be of practical use.

II. METHODS AND MATERIAL

A. Problem Formulation

Let I = { i1, i2,…….n }be a set of items and n is

considered the dimensionality of the problem. Let D be

the task relevant database which consists of transactions

where each transaction T is set of items such that T £ I.

A transaction T is said to contain itemset X, which is

called a pattern. A transaction T is said to be maximal

frequent if its pattern length is greater than or equal to

all other existing transactional patterns and also count of

occurrence (support) in database is greater than or equal

to specified minimum support threshold [15]. An

itemset X is said to be frequent if its support is greater

than or equal to give the possible minimum support

threshold.

Transactional database D and minimum support

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 49

threshold is given, therefore the problem is to find the

complete set of frequent itemsets from Transactional

type of databases to increase the business, so that

relation between customers behaviour can be found.

Figure 1: Methodology used to find frequent patterns.

FP-tree algorithm [5, 6] is based upon the recursively

divide and conquers strategy; first the set of frequent 1-

itemset and their counts is discovered. With start from

each frequent pattern, construct the conditional pattern

base, then its conditional FP-tree is constructed (which

is a prefix tree.). Until the resulting FP-tree is empty, or

contains only one single path. (Single path will generate

all the combinations of its sub-paths, each of which is a

frequent pattern). The items in each transaction are

processed in L order. (i.e. items in the set were sorted

based on their frequencies in the descending order to

form a list).

B. Construction of FP-Tree

Create root of the tree as a “null”. After scanning the

database D for finding the 1-itemset then process the

each transaction in decreasing order of their frequency.

A new branch is created for each transaction with the

corresponding support. If same node is encountered in

another transaction, just increment the support count by

1 of the common node. Each item points to the

occurrence in the tree using the chain of node-link by

maintaining the header table. After above process

mining of the FP-tree will be done by Creating

Conditional (sub) pattern base[12]. Start from node

constructs its conditional pattern base. Then, Construct

its conditional FP-tree & perform mining on such a tree.

Join the suffix patterns with a frequent pattern generated

from a conditional GP-tree for achieving FP-growth.

The union of all frequent patterns found by above step

gives the required frequent itemset can be found in [10].

The problem of mining frequent itemsets arises in the

large transactional databases when there is need to find

the association rules among the transactional data for

the growth of business. Many different algorithms has

been proposed and developed to increase the efficiency

of mining frequent itemsets including (Horizontal layout

based algorithms, Vertical Layout Based algorithms [1,

2, 4, 8, 9, 10], Projected layout based algorithms and

Hybrid algorithms. There are several ways to mine the

frequent patterns using horizontal layout based

approach. FP-tree is one of the prominent approach to

find this itemset which satisfies the minimum support

which must be given initially by the system and

minimum confidence is one the important parameter to

prune the huge set of itemsets. The FP-tree built for the

conditional pattern base X is called conditional FP-tree.

Let sample database in table 1 where Tid denotes

unique transaction id and I1, I2, I3 indicates number of

itemsets of a particular transaction.

Table 1: Sample transactions with itemsets

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 50

Table 2: Support Count Result

Suppose minimum support is 5. Thus delete all

infrequent items whose support is less than 5.After all

the remaining transactions arranged in descending order

of their frequency. Create a FP- tree[4]. For Each

Transaction create a node of an items whose support is

greater than minimum support, as same node encounter

just increment the support count by 1.

Figure 2: FP-Tree Constructed for Sample Database.

C. Implementation of Proposed Approach

Data Assembly also include collecting of data, for

testing purpose the data is collected from the random

source. The data is challenging due to the number of

characteristics which are the number of the records, and

the sparseness of the data (each records contains only

small portion of items). In our experiments we chose

different dataset with different properties, to prove the

efficiency of the algorithms, Table 3 shows the datasets

and the characteristics such as length and type.

Table 3: Data set properties

In a large transactional database like retailer database it

is common that multiple items are selling or purchasing

simultaneously therefore the database surly contains

various transactions which contain same set of items.

Thus by taking advantage of these transactions trying to

find out the frequent itemsets and prune the database as

early as possible without generating the candidate

itemset and multiple database scan, results in efficiently

usage of memory and improved computation. This

proposed algorithm is based upon the Apriori property

[2] i.e. all non-empty subsets of the frequent itemsets

are frequent. Algorithm has two procedures. In first

procedure, find all those maximal transactions which are

repeating in the database equal to or greater than min

user defined support also known as maximal frequent

itemset [15]. Then get all nonempty subsets of those

maximal frequent itemset as frequent according to

Apriori property. Scan the database to find 1-itemset

frequent elements. There may be many items found

which are 1-itemset frequent but not include in maximal

frequent transactions. Therefore prune the database by

just considering only those transactions from the

database which contain 1-itemset frequent elements, but

not include in the maximal frequent itemsets. Now this

pruned database is smaller than the actual database in

the average cases and no item left in best case. For the

second procedure, pruned database is taken as input and

scan the pruned database once find 1-itemset frequent

and delete those items from transaction which are not 1-

itemset frequent. Then construct the FP-tree [6] only for

pruned transactions. In this way it reduces the memory

problem for FP-tree because the database is reduced in

most of cases. In best case no need to build FP-tree

because all elements are found in first procedure. In the

worst case if there is no maximal frequent transaction

exist, then only second procedure run and also

computational performance is same as FP-tree[11]. The

key of this idea to prune the database after finding the

maximal frequent itemsets and formation of FP-tree for

a pruned database thus reduce memory problem in FP-

tree and make the mining process fast. The more detail

step as follows:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 51

Procedure1:

Input: Database D, minimum support

Step 1: Take a 2- dimensional array; Put the transaction

into 2-dimmension array with their count of repetition.

Step 2: Arrange them in increasing order on the basis of

the pattern length of each transaction.

Step 3: Find maximal transactions (k-itemset) from the

array whose count is greater than or equal to the

minimum support known as maximal frequent itemsets

or transactions. If k-itemsets count is less than minimum

support then look for k-itemsets and (k-1)-itemsets

jointly for next (k-1) maximal itemsets and so on until

no itemsets count found greater than minimum support.

If no such transaction found then go to Procedure2.

Step 4: Once the maximal frequent transactions found,

than according to Apriori property consider all its non-

empty subsets are frequent.

Output: some or all frequent itemsets, Pruned database-

D1.

Procedure2:

Input: Pruned database D1, minimum support

Step 1: Find frequent 1-itemset from pruned database;

delete all those items which are not 1-itemset frequent.

Step 2: Construct FP-tree for mine remaining frequent

itemset by following the procedure of FP-tree algorithm

as discussed above in section 2B.

Output: Remaining frequent itemsets.

Table 4: (step-1) After scanning a database put items in

2-dimensional array with the count of repetition.

According to step-2 find maximal itemset (4-itemset).

Check weather its count is greater or equal to specified

support, its count is 2 in our case which is equal to

given support therefore this transaction is considered as

maximal frequent. (If its count is less than support value

then we scan k-1 and k-itemset in array for k-1 maximal

itemset jointly and so on until finding all maximal

frequent itemset from a array. i.e. 3-itemset and 4-

itemset for checking 3-itemset maximal and so on).

According to Apriori property (step 3) subset of

maximal frequent itemset is also considered as frequent

.i.e. Maximal frequent itemset: {I1, I2, I3, I5}.All

subsets are frequent (Apriori Property) i.e. {I1, I2, and

I3},{I1, I2, I5}, {I2, I3, I5}, {I2, I3}, {I2, I5}, {I1, I2},

{I1, I3}, {I1, I5}, {I3, I5}, {I1}, {I2}, {I3}.

While scan the database for finding the above mined

support to find 1-itemset frequent from database, it is

found that I4 which is frequent butnot include in

maximal frequent itemset. (There may be many items

remain which are not include in maximal frequent

itemsets, in our case only 1 item is there). Prune the

database by considering only transaction which contains

I4 itemset.

Output: Some frequent itemsets ({I1, I2, I5}, {I2, I3,

I5}, {I2, I3}, {I2, I5}, {I1, I2}, {I1, I3}, {I1, I5}, {I3,

I5},{I1},{I2},{I3}).

III. RESULTS AND DISCUSSION

Time Comparison

As a result of the experimental study, revealed the

performance of our new technique with the Apriori and

FP-Growth algorithm. The run time is the time to mine

the frequent itemsets. The experimental result of time is

shown in Figure 3 reveals that the proposed scheme

outperforms the FP-growth and the Apriori approach.

Figure 3: The execution time for mushroom dataset.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 52

Figure 4 : The execution time for Artificial dataset

As it is clear from the comparison new algorithm

performs well for the low support value for the

mushroom dataset which contains 8124 transactions and

average length of items 23. But at the higher support its

performance matches the FP-Tree and Apriori

algorithms. Apriori performs with larger time. FP-tree

produces the approximately same execution as of new

approach in later stages. For the artificial dataset which

contains the maximal frequent itemset in large amount

shows better result with new approach as shown in

figure 3 then FP-tree and Apriori algorithm. In the

artificial dataset there are various transactions consider

which occur repeatedly in the database and some

transactions occur greater than the minimum support.

The itemset remains for mining frequent itemset are

mined with the help of second procedure whose

complexity equals to the FP-Growth algorithm but due

to procedure 1 the overall complexity reduce and

become efficient and more accurate than classic apriori.

Memory-Comparison

Figure 5 : The memory usage at various support levels

on Mushroom dataset.

As it is clear from figure 5, the memory consumption

for the Apriori algorithm is the highest at all level

support because it produces candidate itemsets. The

memory consumption for FP-tree at higher support

levels is approximately same as the new approach

because as the support increase the probability of

finding the maximal itemset whose repetition is greater

than the minimum support. is less thus its working

become same as the FP-Growth algorithm

The below figure 6 shows the comparison takes place at

sparse dataset, in sparse dataset data sets containing

more enough zero entries (unmarked fields or items), in

other words, the ratio number of fields / number of

elements for the data database is smaller. Since the

Apriori algorithm stores and processes only the non-

zero entries, it takes the advantage of pruning most of

the infrequent items during the first few passes.

Therefore At high levels support the performances of

our proposed scheme and Apriori are near. But at lower

levels it shows that new approach performs well at all

support level in consumption of memory. In this case

also Apriori consume large amount of memory which is

more than the FP-Tree and new approach due to its

candidate generation problem. FP-tree approach

performs better than the Apriori but not than the new

approach.

Figure 6: The memory usage at various support levels

on Artificial dataset.

IV. CONCLUSION

We considered the following factors for creating our

new scheme, which are the time and the memory

consumption, these factors are affected by the approach

for finding the frequent itemsets. Work has been done to

develop an algorithm which is an improvement over

Apriori and FP-tree with using an approach of improved

Apriori and FP-Tree algorithm for a transactional

database. According to our observations, the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 53

performances of the algorithms are strongly depends on

the support levels and the features of the data sets (the

nature and the size of the data sets). Therefore we

employed it in our scheme to guarantee the time saving

and the memory in the case of sparse and dense data

sets. It is found that for a transactional database where

many transaction items are repeated many times as a

super set in that type of database maximal Apriori

(improvement over classical Apriori) is best suited for

mining frequent itemsets. The itemsets which are not

included in maximal super set is treated by FP-tree for

finding the remaining frequent itemsets. Thus this

algorithm produces frequent itemsets completely. This

approach doesn’t produce candidate itemsets and

building FP-tree only for pruned database that fit into

main memory easily. Thus it saves much time and space

and considered as an efficient method as proved from

the results.

V. REFERENCES

[1]. A. Savasere, E. Omiecinski, and S. Navathe. "An

efficient algorithm for mining association rules in

large databases". In Proc. Int’l Conf. Very Large

Data Bases.

[2]. Aggrawal.R, Imielinski.t, Swami.A. "Mining

Association Rules between Sets of Items in Large

Databases". In Proc. Int’l Conf. of the 1993 ACM

SIGMOD Conference Washington DC, USA.

[3]. Agrawal.R and Srikant.R. "Fast algorithms for

mining association rules". In Proc. Int’l Conf.

Very Large Data Bases (VLDB), Sept. 1994,

pages 487–499.

[4]. Brin.S, Motwani. R, Ullman. J.D, and S. Tsur.

"Dynamic itemset counting and implication rules

for market basket analysis". In Proc. ACM-

SIGMOD Int’l Conf. Management of Data

(SIGMOD), May 1997, pages 255–264.

[5]. C. Borgelt. "An Implementation of the FP- growth

Algorithm". Proc. Workshop Open Software for

Data Mining, 1–5.ACMPress, New York, NY,

USA 2005.

[6]. Han.J, Pei.J, and Yin. Y. "Mining frequent

patterns without candidate generation". In Proc.

ACM-SIGMOD Int’l Conf. Management of Data

(SIGMOD),2000.

[7]. Park. J. S, M.S. Chen, P.S. Yu. "An effective

hash-based algorithm for mining. association

rules". In Proc. ACM-SIGMOD Int’l Conf.

Management of Data (SIGMOD), San Jose, CA,

May 1995, pages 175–186.

[8]. Pei.J, Han.J, Lu.H, Nishio.S. Tang. S. and Yang.

D. "H-mine: Hyper-structure mining of frequent

patterns in large databases". In Proc. Int’l Conf.

Data Mining (ICDM),November 2001.

[9]. C.Borgelt. "Efficient Implementations of Apriori

and Eclat". In Proc. 1st IEEE ICDM Workshop on

Frequent Item Set Mining Implementations,

CEUR Workshop Proceedings 90, Aachen,

Germany 2003.

[10]. Toivonen.H. "Sampling large databases for

association rules". In Proc. Int’l Conf. Very Large

Data Bases (VLDB), Sept. 1996, Bombay, India,

pages 134–145.

[11]. Nizar R.Mabrouken, C.I.Ezeife. Taxonomy of

Sequential Pattern Mining Algorithm". In Proc. in

ACM Computing Surveys, Vol 43, No 1, Article

3, November,2010.

[12]. Yiwu Xie, Yutong Li, Chunli Wang, Mingyu Lu.

"The Optimization and Improvement of the

Apriori Algorithm". In Proc. Int’l Workshop on

Education Technology and Training &

International Workshop on Geoscience and

Remote Sensing 2008.

[13]. "Data mining Concepts and Techniques" by By

Jiawei Han, Micheline Kamber, Morgan

Kaufmann Publishers, 2006.

[14]. S.P Latha, DR. N.Ramaraj. "Algorithm for

Efficient Data Mining". In Proc. Int’l Conf. on

IEEE International Computational Intelligence

and Multimedia Applications, 2007, pp. 66-70.

[15]. Dongme Sun, Shaohua Teng, Wei Zhang, Haibin

Zhu. "An Algorithm to Improve the Effectiveness

of Apriori". In Proc. Int’l Conf. on 6th IEEE Int.

Conf. on Cognitive Informatics (ICCI'07), 2007.

